Analysis of Univariate Nonstationary Subdivision Schemes with Application to Gaussian-Based Interpolatory Schemes
نویسندگان
چکیده
This paper is concerned with non-stationary subdivision schemes. First, we derive new sufficient conditions for Cν smoothness of such schemes. Next, a new class of interpolatory 2m-point non-stationary subdivision schemes based on Gaussian interpolation is presented. These schemes are shown to be CL+μ with L ∈ Z+ and μ ∈ (0, 1), where L is the integer smoothness order of the known 2m-point Deslauiers-Dubuc interpolatory schemes.
منابع مشابه
Interpolatory blending net subdivision schemes of Dubuc-Deslauriers type
Net subdivision schemes recursively refine nets of univariate continuous functions defined on the lines of planar grids, and generate as limits bivariate continuous functions. In this paper a family of interpolatory net subdivision schemes related to the family of Dubuc-Deslauriers interpolatory subdivision schemes is constructed and analyzed. The construction is based on Gordon blending interp...
متن کاملApproximation order of interpolatory nonlinear subdivision schemes
Linear interpolatory subdivision schemes of C smoothness have approximation order at least r + 1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to exten...
متن کاملFrom approximating to interpolatory non-stationary subdivision schemes with the same generation properties
In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C. Conti, L. Gemignani, L. Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971– 1987] to full generality by rem...
متن کاملStability of subdivision schemes
The stability of stationary interpolatory subdivision schemes for univariate data is investigated. If the subdivision scheme is linear, its stability follows from the convergence of the scheme, but for nonlinear subdivision schemes one needs stronger conditions and the stability analysis of nonlinear schemes is more involved. Apart from the fact that it is natural to demand that subdivision sch...
متن کاملAnalysis of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials
In this study, we are concerned with non-stationary interpolatory subdivision schemes with refinement rules which may vary from level to level. First, we derive a new class of interpolatory non-stationary subdivision schemes reproducing exponential polynomials. Next, we prove that non-stationary schemes based on the known butterfly-shaped stencils possess the same smoothness as the known Butter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2007